233 lines
5.1 KiB
C++
233 lines
5.1 KiB
C++
#pragma once
|
|
|
|
#include "../clock.hpp"
|
|
|
|
#include <stdint.h>
|
|
|
|
#define FORCE_INLINE __attribute__((always_inline))
|
|
|
|
namespace uart {
|
|
|
|
enum class Mode {
|
|
ASYNCHRONOUS,
|
|
ASYNCHRONOUS_2X,
|
|
SYNCHRONOUS_MASTER,
|
|
SYNCHRONOUS_SLAVE,
|
|
SPI,
|
|
};
|
|
|
|
enum class Driven {
|
|
INTERRUPT,
|
|
BLOCKING,
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
template <class Registers, typename CtrlFlagsA, typename CtrlFlagsB, typename CtrlFlagsC, class cfg, Mode mode,
|
|
Driven driven>
|
|
class Hardware {
|
|
public:
|
|
static void init() FORCE_INLINE
|
|
{
|
|
constexpr auto baudVal = calcBaud();
|
|
|
|
*Registers::BAUD_REG_H = static_cast<uint8_t>(baudVal >> 8);
|
|
*Registers::BAUD_REG_L = static_cast<uint8_t>(baudVal);
|
|
|
|
constexpr auto dataBitsVal = calcDataBits();
|
|
constexpr auto parityVal = calcParity();
|
|
constexpr auto stopBitsVal = calcStopBits();
|
|
constexpr auto modeVal = calcMode();
|
|
constexpr auto enableRx = calcRxState<true>();
|
|
constexpr auto enableTx = calcTxState<true>();
|
|
constexpr auto interruptVal = calcInterrupt();
|
|
|
|
constexpr uint8_t controlRegB = dataBitsVal.regBVal | enableRx | enableTx | interruptVal;
|
|
constexpr uint8_t controlRegC = dataBitsVal.regCVal | parityVal | stopBitsVal | modeVal;
|
|
|
|
*Registers::CTRL_STAT_REG_B = controlRegB;
|
|
*Registers::CTRL_STAT_REG_C = controlRegC;
|
|
}
|
|
|
|
static bool rxByteBlocking(typename cfg::data_t &byte) FORCE_INLINE
|
|
{
|
|
if (*Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::RECEIVE_COMPLETE)) {
|
|
byte = *Registers::IO_REG;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static typename cfg::data_t rxByteInterrupt() FORCE_INLINE
|
|
{
|
|
return *Registers::IO_REG;
|
|
}
|
|
|
|
static bool txEmpty() FORCE_INLINE
|
|
{
|
|
return *Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::DATA_REG_EMPTY);
|
|
}
|
|
|
|
static bool txComplete() FORCE_INLINE
|
|
{
|
|
return *Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::TRANSMIT_COMPLETE);
|
|
}
|
|
|
|
static void clearTxComplete() FORCE_INLINE
|
|
{
|
|
*Registers::CTRL_STAT_REG_A |= (1 << CtrlFlagsA::TRANSMIT_COMPLETE);
|
|
}
|
|
|
|
static void txByteBlocking(const typename cfg::data_t &byte) FORCE_INLINE
|
|
{
|
|
while (!txEmpty())
|
|
;
|
|
|
|
*Registers::IO_REG = byte;
|
|
}
|
|
|
|
static void txByteInterrupt(volatile const typename cfg::data_t &byte) FORCE_INLINE
|
|
{
|
|
*Registers::IO_REG = byte;
|
|
}
|
|
|
|
static bool peekBlocking() FORCE_INLINE
|
|
{
|
|
if (*Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::RECEIVE_COMPLETE)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void enableDataRegEmptyInt() FORCE_INLINE
|
|
{
|
|
*Registers::CTRL_STAT_REG_B |= (1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE);
|
|
}
|
|
|
|
static void disableDataRegEmptyInt() FORCE_INLINE
|
|
{
|
|
*Registers::CTRL_STAT_REG_B &= ~(1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE);
|
|
}
|
|
|
|
private:
|
|
struct DataBitsVal {
|
|
uint8_t regCVal = 0;
|
|
uint8_t regBVal = 0;
|
|
};
|
|
|
|
static constexpr auto calcBaud()
|
|
{
|
|
// The actual formula is (F_CPU / (16 * baudRate)) - 1, but this one has the advantage of rounding correctly
|
|
constexpr auto baudVal = (F_CPU + 8 * cfg::BAUD_RATE) / (16 * cfg::BAUD_RATE) - 1;
|
|
return baudVal;
|
|
}
|
|
|
|
static constexpr auto calcDataBits()
|
|
{
|
|
DataBitsVal dataBitsVal;
|
|
|
|
switch (cfg::DATA_BITS) {
|
|
case DataBits::FIVE:
|
|
dataBitsVal.regCVal = 0;
|
|
break;
|
|
case DataBits::SIX:
|
|
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_0);
|
|
break;
|
|
case DataBits::SEVEN:
|
|
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1);
|
|
break;
|
|
case DataBits::EIGHT:
|
|
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1) | (1 << CtrlFlagsC::CHAR_SIZE_0);
|
|
break;
|
|
case DataBits::NINE:
|
|
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1) | (1 << CtrlFlagsC::CHAR_SIZE_0);
|
|
dataBitsVal.regBVal = (1 << CtrlFlagsB::CHAR_SIZE_2);
|
|
break;
|
|
}
|
|
|
|
return dataBitsVal;
|
|
}
|
|
|
|
static constexpr auto calcParity()
|
|
{
|
|
uint8_t parityVal = 0;
|
|
|
|
if (cfg::PARITY == Parity::EVEN)
|
|
parityVal = (1 << CtrlFlagsC::PARITY_MODE_1);
|
|
else if (cfg::PARITY == Parity::ODD)
|
|
parityVal = (1 << CtrlFlagsC::PARITY_MODE_1) | (1 << CtrlFlagsC::PARITY_MODE_0);
|
|
|
|
return parityVal;
|
|
}
|
|
|
|
static constexpr auto calcStopBits()
|
|
{
|
|
uint8_t stopBitsVal = 0;
|
|
|
|
if (cfg::STOP_BITS == StopBits::TWO)
|
|
stopBitsVal = (1 << CtrlFlagsC::STOP_BIT_SEL);
|
|
|
|
return stopBitsVal;
|
|
}
|
|
|
|
static constexpr auto calcMode()
|
|
{
|
|
static_assert(mode != Mode::SPI, "SPI mode can not be used with uart");
|
|
|
|
uint8_t modeVal = 0;
|
|
|
|
if (mode == Mode::SYNCHRONOUS_MASTER || mode == Mode::SYNCHRONOUS_SLAVE) {
|
|
modeVal = (1 << CtrlFlagsC::MODE_SEL_0);
|
|
}
|
|
|
|
return modeVal;
|
|
}
|
|
|
|
template <bool enable>
|
|
static constexpr auto calcRxState()
|
|
{
|
|
uint8_t enableVal = 0;
|
|
|
|
if (enable)
|
|
enableVal = (1 << CtrlFlagsB::RX_ENABLE);
|
|
|
|
return enableVal;
|
|
}
|
|
|
|
template <bool enable>
|
|
static constexpr auto calcTxState()
|
|
{
|
|
uint8_t enableVal = 0;
|
|
|
|
if (enable)
|
|
enableVal = (1 << CtrlFlagsB::TX_ENABLE);
|
|
|
|
return enableVal;
|
|
}
|
|
|
|
static constexpr auto calcInterrupt()
|
|
{
|
|
uint8_t interruptVal = 0;
|
|
|
|
if (driven == Driven::INTERRUPT)
|
|
interruptVal |= (1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE) | (1 << CtrlFlagsB::RX_INT_ENABLE);
|
|
|
|
return interruptVal;
|
|
}
|
|
};
|
|
|
|
template <typename data_t, uint8_t Size>
|
|
struct RingBuffer {
|
|
uint8_t head;
|
|
uint8_t tail;
|
|
data_t buf[Size];
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace uart
|
|
|
|
#undef FORCE_INLINE
|