#pragma once #include "../clock.hpp" #include #define FORCE_INLINE __attribute__((always_inline)) namespace uart { enum class Mode { ASYNCHRONOUS, ASYNCHRONOUS_2X, SYNCHRONOUS_MASTER, SYNCHRONOUS_SLAVE, SPI, }; enum class Driven { INTERRUPT, BLOCKING, }; namespace detail { template class Hardware { public: static void init() FORCE_INLINE { constexpr auto baudVal = calcBaud(); *Registers::BAUD_REG_H = static_cast(baudVal >> 8); *Registers::BAUD_REG_L = static_cast(baudVal); constexpr auto dataBitsVal = calcDataBits(); constexpr auto parityVal = calcParity(); constexpr auto stopBitsVal = calcStopBits(); constexpr auto modeVal = calcMode(); constexpr auto enableRx = calcRxState(); constexpr auto enableTx = calcTxState(); constexpr auto interruptVal = calcInterrupt(); constexpr uint8_t controlRegB = dataBitsVal.regBVal | enableRx | enableTx | interruptVal; constexpr uint8_t controlRegC = dataBitsVal.regCVal | parityVal | stopBitsVal | modeVal; *Registers::CTRL_STAT_REG_B = controlRegB; *Registers::CTRL_STAT_REG_C = controlRegC; } static bool rxByteBlocking(typename cfg::data_t &byte) FORCE_INLINE { if (*Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::RECEIVE_COMPLETE)) { byte = *Registers::IO_REG; return true; } return false; } static typename cfg::data_t rxByteInterrupt() FORCE_INLINE { return *Registers::IO_REG; } static bool txEmpty() FORCE_INLINE { return *Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::DATA_REG_EMPTY); } static bool txComplete() FORCE_INLINE { return *Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::TRANSMIT_COMPLETE); } static void clearTxComplete() FORCE_INLINE { *Registers::CTRL_STAT_REG_A |= (1 << CtrlFlagsA::TRANSMIT_COMPLETE); } static void txByteBlocking(const typename cfg::data_t &byte) FORCE_INLINE { while (!txEmpty()) ; *Registers::IO_REG = byte; } static void txByteInterrupt(volatile const typename cfg::data_t &byte) FORCE_INLINE { *Registers::IO_REG = byte; } static bool peekBlocking() FORCE_INLINE { if (*Registers::CTRL_STAT_REG_A & (1 << CtrlFlagsA::RECEIVE_COMPLETE)) { return true; } return false; } static void enableDataRegEmptyInt() FORCE_INLINE { *Registers::CTRL_STAT_REG_B |= (1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE); } static void disableDataRegEmptyInt() FORCE_INLINE { *Registers::CTRL_STAT_REG_B &= ~(1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE); } private: struct DataBitsVal { uint8_t regCVal = 0; uint8_t regBVal = 0; }; static constexpr auto calcBaud() { // The actual formula is (F_CPU / (16 * baudRate)) - 1, but this one has the advantage of rounding correctly constexpr auto baudVal = (F_CPU + 8 * cfg::BAUD_RATE) / (16 * cfg::BAUD_RATE) - 1; return baudVal; } static constexpr auto calcDataBits() { DataBitsVal dataBitsVal; switch (cfg::DATA_BITS) { case DataBits::FIVE: dataBitsVal.regCVal = 0; break; case DataBits::SIX: dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_0); break; case DataBits::SEVEN: dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1); break; case DataBits::EIGHT: dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1) | (1 << CtrlFlagsC::CHAR_SIZE_0); break; case DataBits::NINE: dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1) | (1 << CtrlFlagsC::CHAR_SIZE_0); dataBitsVal.regBVal = (1 << CtrlFlagsB::CHAR_SIZE_2); break; } return dataBitsVal; } static constexpr auto calcParity() { uint8_t parityVal = 0; if (cfg::PARITY == Parity::EVEN) parityVal = (1 << CtrlFlagsC::PARITY_MODE_1); else if (cfg::PARITY == Parity::ODD) parityVal = (1 << CtrlFlagsC::PARITY_MODE_1) | (1 << CtrlFlagsC::PARITY_MODE_0); return parityVal; } static constexpr auto calcStopBits() { uint8_t stopBitsVal = 0; if (cfg::STOP_BITS == StopBits::TWO) stopBitsVal = (1 << CtrlFlagsC::STOP_BIT_SEL); return stopBitsVal; } static constexpr auto calcMode() { static_assert(mode != Mode::SPI, "SPI mode can not be used with uart"); uint8_t modeVal = 0; if (mode == Mode::SYNCHRONOUS_MASTER || mode == Mode::SYNCHRONOUS_SLAVE) { modeVal = (1 << CtrlFlagsC::MODE_SEL_0); } return modeVal; } template static constexpr auto calcRxState() { uint8_t enableVal = 0; if (enable) enableVal = (1 << CtrlFlagsB::RX_ENABLE); return enableVal; } template static constexpr auto calcTxState() { uint8_t enableVal = 0; if (enable) enableVal = (1 << CtrlFlagsB::TX_ENABLE); return enableVal; } static constexpr auto calcInterrupt() { uint8_t interruptVal = 0; if (driven == Driven::INTERRUPT) interruptVal |= (1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE) | (1 << CtrlFlagsB::RX_INT_ENABLE); return interruptVal; } }; template struct RingBuffer { uint8_t head; uint8_t tail; data_t buf[Size]; }; } // namespace detail } // namespace uart #undef FORCE_INLINE