uart/uart/main.cpp
2019-07-30 21:51:47 +02:00

195 lines
3.5 KiB
C++

#include "clock.h"
#include <avr/interrupt.h>
#include <stdint.h>
#include "flash/flash.hpp"
#include "io/io.hpp"
#include "uart/uart.h"
#include "uart/uart.hpp"
#include "uart/usart.h"
void newUartUsage()
{
using namespace uart;
Uart0<> serial;
Uart1<> serial1;
serial << "Hello World from RAM. " << F("Hello World from flash\r\n");
serial1 << "Hello World from RAM. " << F("Hello World from flash\r\n");
_delay_ms(1000);
}
void newUartUsage2()
{
using namespace uart;
using config = Config<9600, DataBits::EIGHT, Parity::NONE, StopBits::ONE>;
using uart0 = Hardware0<Mode::ASYNCHRONOUS, config, Driven::INTERRUPT>;
using softuart = Software<io::P::B1, io::P::B2, config>;
Uart<uart0> serial;
Uart<softuart> softSerial;
serial << "Hello World from RAM. " << F("Hello World from flash\r\n");
// softSerial << "Hello World using finalized software interface!" << F("\r\nAlso greetz from progmem\r\n");
_delay_ms(1000);
}
void oldUsartUsage()
{
USART0 &serial = USART0::inst();
serial.init(9600);
serial << "Hello World from RAM. "
<< "Hello World from flash\r\n";
_delay_ms(1000);
}
namespace spi {
enum class Cpol {
MODE_0,
MODE_1,
};
enum class Cpha {
MODE_0,
MODE_1,
};
enum class DataOrder {
MSB,
LSB,
};
template <Cpol cpol, Cpha cpha, DataOrder dataOrder>
struct Config {
static constexpr auto CPOL_MODE = cpol;
static constexpr auto CPHA_MODE = cpha;
static constexpr auto DATA_ORDER = dataOrder;
};
template <class Driver>
struct spi {
spi()
{
Driver::init();
}
};
} // namespace spi
namespace uart {
template <class Config>
class Hardware0<Mode::SPI, Config> {
public:
static void init()
{
UCSR0C |= (1 << UMSEL01) | (1 << UMSEL00);
if (DATA_ORDER == spi::DataOrder::MSB)
UCSR0C &= ~(1 << UCSZ01);
else
UCSR0C |= (1 << UCSZ01);
if (CPOL_MODE == spi::Cpol::MODE_0)
UCSR0C &= ~(1 << UCPOL0);
else
UCSR0C |= (1 << UCPOL0);
if (CPHA_MODE == spi::Cpha::MODE_0)
UCSR0C &= ~(1 << UCSZ00);
else
UCSR0C |= (1 << UCSZ00);
}
private:
static constexpr auto CPOL_MODE = Config::CPOL_MODE;
static constexpr auto CPHA_MODE = Config::CPHA_MODE;
static constexpr auto DATA_ORDER = Config::DATA_ORDER;
};
} // namespace uart
void spiTest()
{
using config = spi::Config<spi::Cpol::MODE_0, spi::Cpha::MODE_0, spi::DataOrder::MSB>;
using uartspi = uart::Hardware0<uart::Mode::SPI, config>;
spi::spi<uartspi> uartSpi;
}
static inline void initUart(const uint32_t baudRate)
{
UBRR0 = static_cast<uint16_t>((F_CPU / (16 * baudRate)) - 1);
UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);
UCSR0B = (1 << RXEN0) | (1 << TXEN0);
}
static inline void txUart(uint8_t byte)
{
while (!(UCSR0A & (1 << UDRE0)))
;
UDR0 = byte;
}
static inline void txString(const char *str)
{
while (char ch = *str++)
txUart(ch);
}
static inline void txString(const detail::FlashString *str)
{
const char *strIt = reinterpret_cast<const char *>(str);
while (char ch = pgm_read_byte(strIt++))
txUart(ch);
}
void optimalUartTest()
{
auto ramString = "Hello World from RAM. ";
auto flashString = F("Hello World from flash\r\n");
initUart(9600);
txString(ramString);
txString(flashString);
_delay_ms(1000);
}
void cUartLibTest()
{
auto ramString = "Hello World from RAM. ";
auto flashString = F("Hello World from flash\r\n");
uart_init(UART_BAUD_SELECT(9600, F_CPU));
sei();
uart_puts(ramString);
uart_puts_p(reinterpret_cast<const char *>(flashString));
_delay_ms(1000);
}
int main()
{
newUartUsage();
// oldUsartUsage();
// optimalUartTest();
// cUartLibTest();
// spiTest();
return 0;
}