uart/hardware.hpp

424 lines
11 KiB
C++

#pragma once
#include "../clock.hpp"
#include <cmath>
#include <cstdint>
namespace uart {
enum class Mode {
ASYNCHRONOUS,
SYNCHRONOUS_MASTER,
SYNCHRONOUS_SLAVE,
SPI,
};
enum class Driven {
INTERRUPT,
BLOCKING,
};
namespace detail {
using reg_ptr_t = volatile std::uint8_t *;
template <std::uintptr_t Address>
static inline reg_ptr_t getRegPtr()
{
return reinterpret_cast<reg_ptr_t>(Address);
}
template <typename data_t, std::uint8_t Size>
struct RingBuffer {
std::uint8_t head;
std::uint8_t tail;
data_t buf[Size];
};
template <class Registers, typename CtrlFlagsA, typename CtrlFlagsB, typename CtrlFlagsC, class cfg, Driven driven,
Mode mode>
class Hardware {
public:
[[gnu::always_inline]] static void init()
{
constexpr auto AbsDoubleError = std::fabs(calcBaudError<true>());
constexpr auto AbsNormalError = std::fabs(calcBaudError<false>());
static_assert(AbsDoubleError <= 3.0 || AbsNormalError <= 3.0, "Baud rate error over 3%, probably unusable");
constexpr auto UseDoubleSpeed = (AbsDoubleError < AbsNormalError);
constexpr auto BaudVal = calcBaudVal<UseDoubleSpeed>();
*getRegPtr<Registers::BAUD_REG_H_ADDR>() = static_cast<std::uint8_t>(BaudVal >> 8);
*getRegPtr<Registers::BAUD_REG_L_ADDR>() = static_cast<std::uint8_t>(BaudVal);
constexpr auto DataBitsValues = calcDataBits();
constexpr auto ParityVal = calcParity();
constexpr auto StopBitsVal = calcStopBits();
constexpr auto ModeVal = calcMode();
constexpr auto EnableRx = calcRxState<true>();
constexpr auto EnableTx = calcTxState<true>();
constexpr auto InterruptVal = calcInterrupt();
constexpr std::uint8_t ControlRegB = DataBitsValues.regBVal | EnableRx | EnableTx | InterruptVal;
constexpr std::uint8_t ControlRegC = DataBitsValues.regCVal | ParityVal | StopBitsVal | ModeVal;
auto ctrlStatRegA = getRegPtr<Registers::CTRL_STAT_REG_A_ADDR>();
if constexpr (UseDoubleSpeed)
*ctrlStatRegA = *ctrlStatRegA | (1 << CtrlFlagsA::SPEED_2X);
else
*ctrlStatRegA = *ctrlStatRegA & ~(1 << CtrlFlagsA::SPEED_2X);
*getRegPtr<Registers::CTRL_STAT_REG_B_ADDR>() = ControlRegB;
*getRegPtr<Registers::CTRL_STAT_REG_C_ADDR>() = ControlRegC;
}
[[gnu::always_inline]] static bool rxByteBlocking(typename cfg::data_t &byte)
{
if (*getRegPtr<Registers::CTRL_STAT_REG_A_ADDR>() & (1 << CtrlFlagsA::RECEIVE_COMPLETE)) {
byte = *getRegPtr<Registers::IO_REG_ADDR>();
return true;
}
return false;
}
[[gnu::always_inline]] static typename cfg::data_t rxByteInterrupt()
{
return *getRegPtr<Registers::IO_REG_ADDR>();
}
[[gnu::always_inline]] static bool txEmpty()
{
return *getRegPtr<Registers::CTRL_STAT_REG_A_ADDR>() & (1 << CtrlFlagsA::DATA_REG_EMPTY);
}
[[gnu::always_inline]] static bool txComplete()
{
return *getRegPtr<Registers::CTRL_STAT_REG_A_ADDR>() & (1 << CtrlFlagsA::TRANSMIT_COMPLETE);
}
[[gnu::always_inline]] static void clearTxComplete()
{
*getRegPtr<Registers::CTRL_STAT_REG_A_ADDR>() |= (1 << CtrlFlagsA::TRANSMIT_COMPLETE);
}
[[gnu::always_inline]] static void txByteBlocking(const typename cfg::data_t &byte)
{
while (!txEmpty())
;
*getRegPtr<Registers::IO_REG_ADDR>() = byte;
}
[[gnu::always_inline]] static void txByteInterrupt(volatile const typename cfg::data_t &byte)
{
*getRegPtr<Registers::IO_REG_ADDR>() = byte;
}
[[gnu::always_inline]] static bool peekBlocking()
{
if (*getRegPtr<Registers::CTRL_STAT_REG_A_ADDR>() & (1 << CtrlFlagsA::RECEIVE_COMPLETE)) {
return true;
}
return false;
}
[[gnu::always_inline]] static void enableDataRegEmptyInt()
{
auto ctrlStatRegB = getRegPtr<Registers::CTRL_STAT_REG_B_ADDR>();
*ctrlStatRegB = *ctrlStatRegB | (1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE);
}
[[gnu::always_inline]] static void disableDataRegEmptyInt()
{
auto ctrlStatRegB = getRegPtr<Registers::CTRL_STAT_REG_B_ADDR>();
*ctrlStatRegB = *ctrlStatRegB & ~(1 << CtrlFlagsB::DATA_REG_EMPTY_INT_ENABLE);
}
private:
struct DataBitsVal {
std::uint8_t regCVal = 0;
std::uint8_t regBVal = 0;
};
template <bool DoubleSpeed = true>
static constexpr auto calcBaudVal()
{
if constexpr (DoubleSpeed) {
constexpr auto BaudVal = static_cast<std::uint16_t>(round(F_CPU / (8.0 * cfg::BAUD_RATE) - 1));
return BaudVal;
}
constexpr auto BaudVal = static_cast<std::uint16_t>(round(F_CPU / (16.0 * cfg::BAUD_RATE) - 1));
return BaudVal;
}
template <std::uint16_t BaudVal, bool DoubleSpeed = true>
static constexpr auto calcBaudRate()
{
if constexpr (DoubleSpeed) {
constexpr auto BaudRate = static_cast<std::uint32_t>(round(F_CPU / (8.0 * (BaudVal + 1))));
return BaudRate;
}
constexpr auto BaudRate = static_cast<std::uint32_t>(round(F_CPU / (16.0 * (BaudVal + 1))));
return BaudRate;
}
template <bool DoubleSpeed = true>
static constexpr auto calcBaudError()
{
constexpr auto BaudVal = calcBaudVal<DoubleSpeed>();
constexpr auto ClosestBaudRate = calcBaudRate<BaudVal, DoubleSpeed>();
constexpr auto BaudError = (static_cast<double>(ClosestBaudRate) / cfg::BAUD_RATE - 1) * 100;
return BaudError;
}
static constexpr auto calcDataBits()
{
DataBitsVal dataBitsVal;
switch (cfg::DATA_BITS) {
case DataBits::FIVE:
dataBitsVal.regCVal = 0;
break;
case DataBits::SIX:
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_0);
break;
case DataBits::SEVEN:
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1);
break;
case DataBits::EIGHT:
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1) | (1 << CtrlFlagsC::CHAR_SIZE_0);
break;
case DataBits::NINE:
dataBitsVal.regCVal = (1 << CtrlFlagsC::CHAR_SIZE_1) | (1 << CtrlFlagsC::CHAR_SIZE_0);
dataBitsVal.regBVal = (1 << CtrlFlagsB::CHAR_SIZE_2);
break;
}
return dataBitsVal;
}
static constexpr auto calcParity()
{
std::uint8_t parityVal = 0;
if (cfg::PARITY == Parity::EVEN)
parityVal = (1 << CtrlFlagsC::PARITY_MODE_1);
else if (cfg::PARITY == Parity::ODD)
parityVal = (1 << CtrlFlagsC::PARITY_MODE_1) | (1 << CtrlFlagsC::PARITY_MODE_0);
return parityVal;
}
static constexpr auto calcStopBits()
{
std::uint8_t stopBitsVal = 0;
if (cfg::STOP_BITS == StopBits::TWO)
stopBitsVal = (1 << CtrlFlagsC::STOP_BIT_SEL);
return stopBitsVal;
}
static constexpr auto calcMode()
{
static_assert(mode != Mode::SPI, "SPI mode can not be used with uart");
std::uint8_t modeVal = 0;
if (mode == Mode::SYNCHRONOUS_MASTER || mode == Mode::SYNCHRONOUS_SLAVE) {
modeVal = (1 << CtrlFlagsC::MODE_SEL_0);
}
return modeVal;
}
template <bool Enable>
static constexpr auto calcRxState()
{
std::uint8_t enableVal = 0;
if (Enable)
enableVal = (1 << CtrlFlagsB::RX_ENABLE);
return enableVal;
}
template <bool Enable>
static constexpr auto calcTxState()
{
std::uint8_t enableVal = 0;
if (Enable)
enableVal = (1 << CtrlFlagsB::TX_ENABLE);
return enableVal;
}
static constexpr auto calcInterrupt()
{
std::uint8_t interruptVal = 0;
if (driven == Driven::INTERRUPT)
interruptVal = (1 << CtrlFlagsB::RX_INT_ENABLE);
return interruptVal;
}
};
template <class Registers, typename CtrlFlagsA, typename CtrlFlagsB, typename CtrlFlagsC, class cfg, Mode mode>
class BlockingHardware {
public:
using data_t = typename cfg::data_t;
static constexpr auto DATA_BITS = cfg::DATA_BITS;
[[gnu::always_inline]] static void init()
{
HardwareImpl::init();
}
[[gnu::always_inline]] static void txByte(const data_t &byte)
{
HardwareImpl::txByteBlocking(byte);
}
[[gnu::always_inline]] static bool rxByte(data_t &byte)
{
return HardwareImpl::rxByteBlocking(byte);
}
[[gnu::always_inline]] static bool peek(data_t &)
{
static_assert(util::always_false_v<data_t>, "Peek with data is not supported in blocking mode");
return false;
}
[[gnu::always_inline]] static bool peek()
{
return HardwareImpl::peekBlocking();
}
[[gnu::always_inline]] static void flushTx()
{
while (!HardwareImpl::txEmpty())
;
while (!HardwareImpl::txComplete())
;
HardwareImpl::clearTxComplete();
}
private:
using HardwareImpl = Hardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, Driven::BLOCKING, mode>;
};
template <class Registers, typename CtrlFlagsA, typename CtrlFlagsB, typename CtrlFlagsC, class cfg, Mode mode>
class InterruptHardware {
public:
using data_t = typename cfg::data_t;
static constexpr auto DATA_BITS = cfg::DATA_BITS;
[[gnu::always_inline]] static void txByte(const data_t &byte)
{
std::uint8_t tmpHead = (sm_txBuf.head + 1) % TX_BUFFER_SIZE;
while (tmpHead == sm_txBuf.tail)
;
sm_txBuf.buf[tmpHead] = byte;
sm_txBuf.head = tmpHead;
HardwareImpl::enableDataRegEmptyInt();
}
[[gnu::always_inline]] static bool rxByte(data_t &byte)
{
if (sm_rxBuf.head == sm_rxBuf.tail)
return false;
std::uint8_t tmpTail = (sm_rxBuf.tail + 1) % RX_BUFFER_SIZE;
byte = sm_rxBuf.buf[tmpTail];
sm_rxBuf.tail = tmpTail;
return true;
}
[[gnu::always_inline]] static bool peek(data_t &byte)
{
if (sm_rxBuf.head == sm_rxBuf.tail)
return false;
std::uint8_t tmpTail = (sm_rxBuf.tail + 1) % RX_BUFFER_SIZE;
byte = sm_rxBuf.buf[tmpTail];
return true;
}
[[gnu::always_inline]] static bool peek()
{
return (sm_rxBuf.head != sm_rxBuf.tail);
}
[[gnu::always_inline]] static void flushTx()
{
while (sm_txBuf.head != sm_txBuf.tail)
;
while (!HardwareImpl::txEmpty())
;
while (!HardwareImpl::txComplete())
;
HardwareImpl::clearTxComplete();
}
protected:
[[gnu::always_inline]] static void rxIntHandler()
{
const auto data = HardwareImpl::rxByteInterrupt();
const std::uint8_t tmpHead = (sm_rxBuf.head + 1) % RX_BUFFER_SIZE;
if (tmpHead != sm_rxBuf.tail) {
sm_rxBuf.head = tmpHead;
sm_rxBuf.buf[tmpHead] = data;
} else {
// TODO: Handle overflow
}
}
[[gnu::always_inline]] static void dataRegEmptyIntHandler()
{
if (sm_txBuf.head != sm_txBuf.tail) {
const std::uint8_t tmpTail = (sm_txBuf.tail + 1) % TX_BUFFER_SIZE;
sm_txBuf.tail = tmpTail;
HardwareImpl::txByteInterrupt(sm_txBuf.buf[tmpTail]);
} else
HardwareImpl::disableDataRegEmptyInt();
}
private:
using HardwareImpl = Hardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, Driven::INTERRUPT, mode>;
static constexpr auto TX_BUFFER_SIZE = 16;
static constexpr auto RX_BUFFER_SIZE = 16;
static volatile RingBuffer<data_t, TX_BUFFER_SIZE> sm_txBuf;
static volatile RingBuffer<data_t, RX_BUFFER_SIZE> sm_rxBuf;
};
template <class Registers, typename CtrlFlagsA, typename CtrlFlagsB, typename CtrlFlagsC, class cfg, Mode mode>
volatile RingBuffer<typename InterruptHardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, mode>::data_t,
InterruptHardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, mode>::TX_BUFFER_SIZE>
InterruptHardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, mode>::sm_txBuf = {0, 0, {0}};
template <class Registers, typename CtrlFlagsA, typename CtrlFlagsB, typename CtrlFlagsC, class cfg, Mode mode>
volatile RingBuffer<typename InterruptHardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, mode>::data_t,
InterruptHardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, mode>::RX_BUFFER_SIZE>
InterruptHardware<Registers, CtrlFlagsA, CtrlFlagsB, CtrlFlagsC, cfg, mode>::sm_rxBuf = {0, 0, {0}};
} // namespace detail
} // namespace uart