adc/adc.hpp

220 lines
5.0 KiB
C++
Raw Normal View History

#ifndef ADC_HPP
#define ADC_HPP
2020-02-21 19:08:47 +01:00
#include "config.hpp"
#include "hardware.hpp"
2020-02-21 19:08:47 +01:00
#include <stdint.h>
#include "../io/io.hpp"
namespace adc {
namespace detail {
extern void (*fnAdcIntHandler)(uint16_t);
using reg_ptr_t = volatile uint8_t *;
2020-02-21 19:08:47 +01:00
template <uintptr_t Address>
static inline reg_ptr_t getRegPtr()
{
return reinterpret_cast<reg_ptr_t>(Address);
}
template <typename Cfg>
class AdcImpl {
public:
static uint16_t read()
{
2020-02-21 21:53:48 +01:00
*getRegPtr<Registers::CTRL_STAT_A_ADDR>() |= 1 << ControlFlagsA::START_CONV;
while (*getRegPtr<Registers::CTRL_STAT_A_ADDR>() & (1 << ControlFlagsA::START_CONV))
;
uint16_t adcSample = *getRegPtr<Registers::DATA_L_ADDR>();
adcSample |= *getRegPtr<Registers::DATA_H_ADDR>() << 8;
return adcSample;
}
2020-02-21 19:08:47 +01:00
protected:
static void init(uint8_t muxVal)
{
*getRegPtr<Registers::MUX_SEL_ADDR>() = muxVal | calcRef();
2020-02-21 21:53:48 +01:00
auto ctrlStatA = calcCtrlStatA(detail::fnAdcIntHandler != nullptr);
*getRegPtr<Registers::CTRL_STAT_A_ADDR>() = ctrlStatA;
constexpr auto ctrlStatB = calcCtrlStatB();
*getRegPtr<Registers::CTRL_STAT_B_ADDR>() = ctrlStatB;
}
2020-02-21 19:08:47 +01:00
static constexpr auto calcRef()
2020-02-21 19:08:47 +01:00
{
uint8_t muxVal = 0;
if constexpr (Cfg::VREF == VoltageRef::AVCC) {
muxVal |= 1 << ControlFlagsMUX::REF_SEL_0;
} else if constexpr (Cfg::VREF == VoltageRef::INTERNAL) {
muxVal |= (1 << ControlFlagsMUX::REF_SEL_0) | (1 << ControlFlagsMUX::REF_SEL_1);
}
return muxVal;
2020-02-21 19:08:47 +01:00
}
2020-02-21 21:53:48 +01:00
static constexpr uint8_t calcPrescaler()
{
constexpr auto validPrescaler = Cfg::PRESCALER == 2 || Cfg::PRESCALER == 4 || Cfg::PRESCALER == 8 ||
Cfg::PRESCALER == 16 || Cfg::PRESCALER == 32 || Cfg::PRESCALER == 64 ||
Cfg::PRESCALER == 128;
static_assert(validPrescaler, "Invalid prescaler");
// clang-format off
2020-03-29 04:17:47 +02:00
switch (Cfg::PRESCALER) {
case 2: return 1;
case 4: return 2;
case 8: return 3;
case 16: return 4;
case 32: return 5;
case 64: return 6;
case 128: return 7;
}
2020-02-21 21:53:48 +01:00
// clang-format on
}
static auto calcCtrlStatA(bool interruptEnable)
{
uint8_t ctrlStatA = 1 << ControlFlagsA::ENABLE;
if constexpr (Cfg::MODE == Mode::AUTO) {
ctrlStatA |= 1 << ControlFlagsA::AUTO_TRIGGER;
} else if (interruptEnable) {
ctrlStatA |= 1 << ControlFlagsA::CONV_COMPLETE_INT_ENABLE;
}
return ctrlStatA | calcPrescaler();
}
static constexpr uint8_t calcCtrlStatB()
{
if constexpr (Cfg::MODE == Mode::AUTO) {
// clang-format off
switch (Cfg::TRIGGER_SRC) {
case TriggerSource::FREE_RUNNING: return 0;
case TriggerSource::ANALOG_COMP: return 1;
case TriggerSource::EXTERNAL_INT_0: return 2;
case TriggerSource::TIMER0_COMP_A: return 3;
case TriggerSource::TIMER0_OVERFLOW: return 4;
case TriggerSource::TIMER1_COMP_B: return 5;
case TriggerSource::TIMER1_OVERFLOW: return 6;
case TriggerSource::TIMER1_CAPTURE: return 7;
}
// clang-format on
}
return 0;
}
};
2020-02-21 19:08:47 +01:00
} // namespace detail
template <typename Cfg, typename Input, Input src>
class Adc {
public:
static_assert(sizeof(Input) == -1, "Invalid input source selected");
};
template <typename Cfg, io::P pin>
class Adc<Cfg, io::P, pin> : public detail::AdcImpl<Cfg> {
using callback_t = void (*)(uint16_t);
public:
static_assert(detail::supports_adc_v<pin>, "Pin does not support ADC");
static void init(callback_t callback)
{
detail::fnAdcIntHandler = callback;
init();
}
static void init()
{
constexpr auto muxVal = calcChannel();
detail::AdcImpl<Cfg>::init(muxVal);
}
private:
static constexpr auto calcChannel()
{
return static_cast<uint8_t>(pin) - static_cast<uint8_t>(io::P::C0);
}
2020-02-21 19:08:47 +01:00
};
template <typename Cfg, InputSource src>
class Adc<Cfg, InputSource, src> : public detail::AdcImpl<Cfg> {
using callback_t = void (*)(uint16_t);
public:
static void init(callback_t callback)
{
detail::fnAdcIntHandler = callback;
init();
}
static void init()
{
constexpr auto muxVal = calcChannel();
detail::AdcImpl<Cfg>::init(muxVal);
}
private:
static constexpr auto calcChannel()
{
using mx = detail::ControlFlagsMUX;
// clang-format off
switch (src) {
case InputSource::TEMP: return 1 << mx::CHANNEL_SEL_3;
case InputSource::VBG: return (1 << mx::CHANNEL_SEL_3) | (1 << mx::CHANNEL_SEL_2) | (1 << mx::CHANNEL_SEL_1);
case InputSource::GND: return (1 << mx::CHANNEL_SEL_3) | (1 << mx::CHANNEL_SEL_2) | (1 << mx::CHANNEL_SEL_1) | (1 << mx::CHANNEL_SEL_0);
}
// clang-format on
}
};
2020-02-21 19:08:47 +01:00
} // namespace adc
2020-02-21 19:08:47 +01:00
#endif
2020-02-21 19:08:47 +01:00
//////////////////////////////////////////////////////////////////////////
#ifdef ADC_INT_VECTOR
#include <stdint.h>
#include <avr/interrupt.h>
namespace adc {
namespace detail {
#if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega328P__)
void (*fnAdcIntHandler)(uint16_t) = nullptr;
ISR(ADC_vect)
{
if (fnAdcIntHandler) {
const auto adcSample = *getRegPtr<Registers::DATA_L_ADDR>() | (*getRegPtr<Registers::DATA_H_ADDR>() << 8);
fnAdcIntHandler(adcSample);
2020-02-21 19:08:47 +01:00
}
}
#else
#error "This chip is not supported"
#endif
} // namespace detail
} // namespace adc
#undef ADC_INT_VECTORS
#endif